Motor behavior improvement in ischemic gerbils by cholinergic receptor activation and treadmill training

Authors

DOI:

https://doi.org/10.56294/ri202469

Keywords:

Gerbillinae, Brain Ischemia, Cholinergic Agonists, Rotarod Performance Test, Motor Activity

Abstract

Introduction: treadmill exercise training is one of the most investigated non-pharmacological treatment options for experimental brain ischemia. However, the cholinergic system is essential for improving motor behavior responses. 

Objective:  to analyze the effects of a nicotinic acetylcholine receptor (nAChR) agonist (1, 2, and 4 mg/kg) on the motor behavior of ischemic gerbils subjected to forced treadmill training.

Methods: in this experimental study, 72 gerbils, weighing 65–80 g, were divided into eight groups: Sal, Ni1, Ni2, Ni4, I, INi1, INi2, and INi4. Behavioral assessment was initiated 24 hours after the last motor stimulation on the treadmill. Rotarod test (RR) was employed to analyze animal behavior. The data were analyzed using one-way analysis of variance (ANOVA), and the Newman-Keuls post hoc test evidenced differences detected between groups. 

Results: data regarding the RR test revealed decreased time spent on the RR apparatus for the Ni1, Ni4, and I group compared to the Sal and Ni2 groups. However, the INi1 and INi2 groups showed increased time spent compared with the ischemia and INi4 groups (F7,64=4,63; p<0,05).

Conclusions: the present study indicates that treadmill training with a concomitant 1 and 2 mg/kg of nAChR agonist effectively improves the behavior of ischemic gerbils.

References

1. Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J Mol Sci 2020;21(20):7609. doi: 10.3390/ijms21207609

2. Truelsen T, Bonita R, Jamrozik K. Surveillance of stroke: a global perspective. Int J Epidemiol 2001;30. doi: 10.1093/ije/30.suppl_1.s11

3. Lee JC, Won MH. Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol 2014;47(3):149-156. doi: 10.5115/acb.2014.47.3.149

4. Wahl AS, Schwab ME. Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Front Hum Neurosci 2014;8:381. doi: 10.3389/fnhum.2014.00381.

5. Du XY, Zhu XD, Dong G, et al. Characteristics of circle of Willis variations in the mongolian gerbil and a newly established ischemia-prone gerbil group. ILAR Journal. 2011 ;52(1):E1-7. doi: 10.1093/ilar.52.1.e1.

6. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999;79(4):1431-1568. doi: 10.1152/physrev.1999.79.4.1431

7. de Araujo FL, Bertolino G, Gonçalves RB, et al. Neuropathology and behavioral impairments after three types of global ischemia surgery in Meriones unguiculatus: evidence in motor cortex, hippocampal CA1 region and the neostriatum. J Neurol Sci 2012;312(1-2):73-78. doi: 10.1016/j.jns.2011.08.019

8. Kitabatake TT, Marini LC, Gonçalves RB, et al. Behavioral effects and neural changes induced by continuous and not continuous treadmill training, post bilateral cerebral ischemia in gerbils. Behav Brain Res 2015;291:20-25. doi: 10.1016/j.bbr.2015.04.057

9. Silveira APC, Kitabatake TT, Pantaleo VM, Zangrossi H Júnior, Bertolino G, de Oliveira Guirro EC, de Souza HCD, de Araujo JE. Continuous and not continuous 2-week treadmill training enhances the performance in the passive avoidance test in ischemic gerbils. Neurosci Lett 2018;665:170-175. doi: 10.1016/j.neulet.2017.12.012

10. Austin MW, Ploughman M, Glynn L, Corbett D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res 2014;87:8-15. doi: 10.1016/j.neures.2014.06.007

11. Kaur H, Prakash A, Medhi B. Drug Therapy in Stroke: From Preclinical to Clinical Studies. Pharmacology 2013;92(5-6):324-334. doi: 10.1159/000356320

12. Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 2005;15(2):161-167. doi: 10.1016/j.conb.2005.03.004

13. Lipovsek M, Fierro A, Pérez EG, et al. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor, Molecular Biology and Evolution, 2014;31(12):3250–3265. https://doi.org/10.1093/molbev/msu258

14. Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. doi: 10.1371/journal.pbio.3000410

15. Welch KD, Pfister JA, Lima FG, Green BT, Gardner DR. Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice. Toxicol Appl Pharmacol 2013;266(3):366-374. doi: 10.1016/j.taap.2012.11.024

16. Buiatti de Araujo FL, Bertolino G, Rodrigues Funayama CA, et al. Influence of treadmill training on motor performance and organization of exploratory behavior in Meriones unguiculatus with unilateral ischemic stroke: histological correlates in hippocampal CA1 region and the neostriatum. Neurosci Lett. 2008;431(2):179-83. doi: 10.1016/j.neulet.2007.11.038.

17. Hubrecht RC, Carter E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals. 2019; 9(10):754. https://doi.org/10.3390/ani9100754

18. Zhao Y, Pang Q, Liu M, Pan J, Xiang B, Huang T, Tu F, Liu C, Chen X. Treadmill Exercise Promotes Neurogenesis in Ischemic Rat Brains via Caveolin-1/VEGF Signaling Pathways. Neurochem Res 2017;42(2):389-397. doi: 10.1007/s11064-016-2081-z

19. Luo L, Li C, Du X, Shi Q, Huang Q, Xu X, Wang Q. Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav Brain Res 2019;362:323-331. doi: 10.1016/j.bbr.2018.11.037

20. Zhang D, Lu Y, Zhao X, Zhang Q, Li L. Aerobic exercise attenuates neurodegeneration and promotes functional recovery - Why it matters for neurorehabilitation & neural repair. Neurochem Int 2020;141:104862. doi: 10.1016/j.neuint.2020.104862

21. Seyedaghamiri F, Mahmoudi J, Hosseini L, Sadigh-Eteghad S, Farhoudi M. Possible Engagement of Nicotinic Acetylcholine Receptors in Pathophysiology of Brain Ischemia-Induced Cognitive Impairment. J Mol Neurosci 2022;72(3):642-652. doi: 10.1007/s12031-021-01917-4

22. Wogensen E, Malá H, Mogensen J. The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models: A Systematic Review. Neural Plast 2015;2015:830871. doi: 10.1155/2015/830871

23. Royal W 3rd, Can A, Gould TD, Guo M, Huse J, Jackson M, Davis H, Bryant J. Cigarette smoke and nicotine effects on brain proinflammatory responses and behavioral and motor function in HIV-1 transgenic rats. J Neurovirol 2018;24(2):246-253. doi: 10.1007/s13365-018-0623-7

24. Kutlu MG, Gould TJ. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochem Pharmacol 2015;97(4):498-511. doi: 10.1016/j.bcp.2015.07.029

25. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, Alexoff D, Shea C, Schlyer D, Wolf AP, Warner D, Zezulkova I, Cilento R. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996;379(6567):733-736. doi: 10.1038/379733a0

26. Riljak V, Maresova D, Pokorny J. Nicotine effects on rat seizures susceptibility and hippocampal neuronal degeneration. Neuro Endocrinol Lett 2010;31(6):792-795. PMID: 21196917

27. Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2015;96(Pt B):223-234. doi: 10.1016/j.neuropharm.2014.11.009

28. Benowitz NL, Jacob P 3rd, Herrera B. Nicotine intake and dose response when smoking reduced-nicotine content cigarettes. Clin Pharmacol Ther 2006;80(6):703-714. doi: 10.1016/j.clpt.2006.09.007

29. Bradford ST, Stamatovic SM, Dondeti RS, Keep RF, Andjelkovic AV. Nicotine aggravates the brain postischemic inflammatory response. Am J Physiol Heart Circ Physiol 2011;300(4):H1518-H1529. doi: 10.1152/ajpheart.00928.2010

30. Clarke PB, Kumar R. The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br J Pharmacol 1983;78(2):329-337. doi: 10.1111/j.1476-5381.1983.tb09398.x

31. Ortega LA, Tracy BA, Gould TJ, Parikh V. Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behav Brain Res 2013;238:134-145. doi: 10.1016/j.bbr.2012.10.032

Downloads

Published

2024-04-01

How to Cite

1.
do Espírito Santo LH, Zhang K, Kitabatake TT, Gallon Pitta M, de Mello Rosa GH, de Oliveira Guirro EC, et al. Motor behavior improvement in ischemic gerbils by cholinergic receptor activation and treadmill training. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria [Internet]. 2024 Apr. 1 [cited 2024 Sep. 12];4:69. Available from: https://ri.ageditor.ar/index.php/ri/article/view/90