Use of virtual reality in rehabilitation

Authors

  • Javier Gonzalez-Argote Universidad Abierta Interamericana, Facultad de Medicina y Ciencias de la Salud, Carrera de Medicina. Ciudad Autónoma de Buenos Aires, Argentina Author https://orcid.org/0000-0003-0257-1176

DOI:

https://doi.org/10.56294/ri202224

Keywords:

Virtual Reality, Physical Rehabilitation, Mental Rehabilitation

Abstract

Introduction: virtual reality is a promising medical rehabilitation tool, offering patients a safe and interactive experience to improve their quality of life. Scientific studies support its effectiveness in improving balance, coordination, and cognitive function in various conditions.

Methods: PubMed was searched for information using descriptors related to virtual reality and physical and mental rehabilitation. Twenty-nine clinical and observational trial articles published in the last 10 years in English and Spanish were selected, and the PRISMA methodology was used for systematic reviews.

Results: the results indicate that virtual reality therapy can improve motor, cognitive and psychological function in diverse patient populations. However, the effectiveness of different virtual reality approaches may vary depending on the population and rehabilitation goals.

Conclusion: virtual reality therapy improves motor function and quality of life in patients with various medical conditions. Combining it with other therapies can enhance outcomes and shows benefits in treating neurological and psychological conditions.

References

1. Vieira Á, Melo C, Machado J, Gabriel J. Virtual reality exercise on a home-based phase III cardiac rehabilitation program, effect on executive function, quality of life and depression, anxiety and stress: a randomized controlled trial. Disabil Rehabil Assist Technol 2018;13:112-23. https://doi.org/10.1080/17483107.2017.1297858. DOI: https://doi.org/10.1080/17483107.2017.1297858

2. Berton A, Longo UG, Candela V, Fioravanti S, Giannone L, Arcangeli V, et al. Virtual Reality, Augmented Reality, Gamification, and Telerehabilitation: Psychological Impact on Orthopedic Patients’ Rehabilitation. J Clin Med 2020;9:2567. https://doi.org/10.3390/jcm9082567. DOI: https://doi.org/10.3390/jcm9082567

3. Byra J, Czernicki K. The Effectiveness of Virtual Reality Rehabilitation in Patients with Knee and Hip Osteoarthritis. J Clin Med 2020;9:2639. https://doi.org/10.3390/jcm9082639. DOI: https://doi.org/10.3390/jcm9082639

4. Ravi DK, Kumar N, Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy 2017;103:245-58. https://doi.org/10.1016/j.physio.2016.08.004. DOI: https://doi.org/10.1016/j.physio.2016.08.004

5. Charles D, Holmes D, Charles T, McDonough S. Virtual Reality Design for Stroke Rehabilitation. Adv Exp Med Biol 2020;1235:53-87. https://doi.org/10.1007/978-3-030-37639-0_4. DOI: https://doi.org/10.1007/978-3-030-37639-0_4

6. Sokolov AA, Collignon A, Bieler-Aeschlimann M. Serious video games and virtual reality for prevention and neurorehabilitation of cognitive decline because of aging and neurodegeneration. Curr Opin Neurol 2020;33:239-48. https://doi.org/10.1097/WCO.0000000000000791. DOI: https://doi.org/10.1097/WCO.0000000000000791

7. Diaz-Perez E, Florez-Lozano JA. [Virtual reality and dementia]. Rev Neurol 2018;66:344-52. DOI: https://doi.org/10.33588/rn.6610.2017438

8. Amirthalingam J, Paidi G, Alshowaikh K, Iroshani Jayarathna A, Salibindla DBAMR, Karpinska-Leydier K, et al. Virtual Reality Intervention to Help Improve Motor Function in Patients Undergoing Rehabilitation for Cerebral Palsy, Parkinson’s Disease, or Stroke: A Systematic Review of Randomized Controlled Trials. Cureus 2021;13:e16763. https://doi.org/10.7759/cureus.16763. DOI: https://doi.org/10.7759/cureus.16763

9. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología 2021;74:790-9. https://doi.org/10.1016/j.recesp.2021.06.016. DOI: https://doi.org/10.1016/j.rec.2021.07.010

10. Pazzaglia C, Imbimbo I, Tranchita E, Minganti C, Ricciardi D, Lo Monaco R, et al. Comparison of virtual reality and conventional rehabilitation in Parkinson's disease: a randomized controlled trial. Physiotherapy 2020;106:36-42. https://doi.org/10.1016/j.physio.2019.12.007. DOI: https://doi.org/10.1016/j.physio.2019.12.007

11. Kayabinar B, Alemdaroğlu-Gürbüz İ, Yilmaz Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-anonymized trial. Eur J Phys Rehabil Med 2021;57:227-37. https://doi.org/10.23736/S1973-9087.21.06441-8. DOI: https://doi.org/10.23736/S1973-9087.21.06441-8

12. Manuli A, Maggio MG, Latella D, Cannavò A, Balletta T, De Luca R, et al. Can robotic gait rehabilitation plus Virtual Reality affect cognitive and behavioral outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. J Stroke Cerebrovasc Dis 2020;29:104994. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104994. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104994

13. Winter C, Kern F, Gall D, Latoschik ME, Pauli P, Käthner I. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. J Neuroeng Rehabil 2021;18:68. https://doi.org/10.1186/s12984-021-00848-w. DOI: https://doi.org/10.1186/s12984-021-00848-w

14. Meldrum D, Herdman S, Vance R, Murray D, Malone K, Duffy D, et al. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: a randomized controlled trial results. Arch Phys Med Rehabil 2015;96:1319-1328.e1. https://doi.org/10.1016/j.apmr.2015.02.032. DOI: https://doi.org/10.1016/j.apmr.2015.02.032

15. Oh Y-B, Kim G-W, Han K-S, Won YH, Park S-H, Seo J-H, et al. Efficacy of Virtual Reality Combined With Real Instrument Training for Patients With Stroke: A Randomized Controlled Trial. Arch Phys Med Rehabil 2019;100:1400-8. https://doi.org/10.1016/j.apmr.2019.03.013. DOI: https://doi.org/10.1016/j.apmr.2019.03.013

16. Adomavičienė A, Daunoravičienė K, Kubilius R, Varžaitytė L, Raistenskis J. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Medicine (Kaunas) 2019;55:98. https://doi.org/10.3390/medicina55040098. DOI: https://doi.org/10.3390/medicina55040098

17. da Silva Ribeiro NM, Ferraz DD, Pedreira É, Pinheiro Í, da Silva Pinto AC, Neto MG, et al. Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients. Top Stroke Rehabil 2015;22:299-305. https://doi.org/10.1179/1074935714Z.0000000017. DOI: https://doi.org/10.1179/1074935714Z.0000000017

18. Monteiro-Junior RS, Figueiredo LF da S, Maciel-Pinheiro P de T, Abud ELR, Engedal K, Barca ML, et al. Virtual Reality-Based Physical Exercise With Exergames (PhysEx) Improves Mental and Physical Health of Institutionalized Older Adults. J Am Med Dir Assoc 2017;18:454.e1-454.e9. https://doi.org/10.1016/j.jamda.2017.01.001. DOI: https://doi.org/10.1016/j.jamda.2017.01.001

19. Szczepańska-Gieracha J, Jóźwik S, Cieślik B, Mazurek J, Gajda R. Immersive Virtual Reality Therapy as a Support for Cardiac Rehabilitation: A Pilot Randomized-Controlled Trial. Cyberpsychol Behav Soc Netw 2021;24:543-9. https://doi.org/10.1089/cyber.2020.0297. DOI: https://doi.org/10.1089/cyber.2020.0297

20. Straker LM, Campbell AC, Jensen LM, Metcalf DR, Smith AJ, Abbott RA, et al. Rationale, design, and methods for a randomized and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder. BMC Public Health 2011;11:654. https://doi.org/10.1186/1471-2458-11-654. DOI: https://doi.org/10.1186/1471-2458-11-654

21. Marivan K, Boully C, Benveniste S, Reingewirtz S, Rigaud A-S, Kemoun G, et al. Rehabilitation of the psychomotor consequences of falling in an elderly population: A pilot study to evaluate feasibility and tolerability of virtual reality training. Technol Health Care 2016;24:169-75. https://doi.org/10.3233/THC-151114. DOI: https://doi.org/10.3233/THC-151114

22. Munari D, Fonte C, Varalta V, Battistuzzi E, Cassini S, Montagnoli AP, et al. Effects of robot-assisted gait training combined with virtual reality on motor and cognitive functions in patients with multiple sclerosis: A pilot, single-blind, randomized controlled trial. Restor Neurol Neurosci 2020;38:151-64. https://doi.org/10.3233/RNN-190974. DOI: https://doi.org/10.3233/RNN-190974

23. Jóźwik S, Cieślik B, Gajda R, Szczepańska-Gieracha J. The Use of Virtual Therapy in Cardiac Rehabilitation of Female Patients with Heart Disease. Medicine (Kaunas) 2021;57:768. https://doi.org/10.3390/medicina57080768. DOI: https://doi.org/10.3390/medicina57080768

24. Gulsen C, Soke F, Eldemir K, Apaydin Y, Ozkul C, Guclu-Gunduz A, et al. Effect of fully immersive virtual reality treatment combined with exercise in fibromyalgia patients: a randomized controlled trial. Assist Technol 2020;34:256-63. https://doi.org/10.1080/10400435.2020.1772900. DOI: https://doi.org/10.1080/10400435.2020.1772900

25. Lee M, Son J, Kim J, Yoon B. Individualized feedback-based virtual reality exercise improves older women’s self-perceived health: a randomized controlled trial. Arch Gerontol Geriatr 2015;61:154-60. https://doi.org/10.1016/j.archger.2015.06.010. DOI: https://doi.org/10.1016/j.archger.2015.06.010

26. Gamito P, Oliveira J, Matias M, Cunha E, Brito R, Lopes PF, et al. Virtual Reality Cognitive Training Among Individuals With Alcohol Use Disorder Undergoing Residential Treatment: Pilot Randomized Controlled Trial. J Med Internet Res 2021;23:e18482. https://doi.org/10.2196/18482. DOI: https://doi.org/10.2196/18482

27. Romero-Ayuso D, Alcántara-Vázquez P, Almenara-García A, Nuñez-Camarero I, Triviño-Juárez JM, Ariza-Vega P, et al. Self-Regulation in Children with Neurodevelopmental Disorders «SR-MRehab: Un Colegio Emocionante»: A Protocol Study. Int J Environ Res Public Health 2020;17:4198. https://doi.org/10.3390/ijerph17124198. DOI: https://doi.org/10.3390/ijerph17124198

28. Burdea G, Polistico K, Krishnamoorthy A, House G, Rethage D, Hundal J, et al. Feasibility study of the BrightBrainerTM integrative cognitive rehabilitation system for elderly with dementia. Disabil Rehabil Assist Technol 2015;10:421-32. https://doi.org/10.3109/17483107.2014.900575. DOI: https://doi.org/10.3109/17483107.2014.900575

29. Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Hausdorff JM, Mirelman A. Disparate effects of training on brain activation in Parkinson's disease. Neurology 2017;89:1804-10. https://doi.org/10.1212/WNL.0000000000004576. DOI: https://doi.org/10.1212/WNL.0000000000004576

30. Andersson UM, Åberg AC, von Koch L, Palstam A. Women with Fibromyalgia Prefer Resistance Exercise with Heavy Loads-A Randomized Crossover Pilot Study. Int J Environ Res Public Health 2021;18:6276. https://doi.org/10.3390/ijerph18126276. DOI: https://doi.org/10.3390/ijerph18126276

31. Karssemeijer EGA, Bossers WJR, Aaronson JA, Sanders LMJ, Kessels RPC, Olde Rikkert MGM. Exergaming as a Physical Exercise Strategy Reduces Frailty in People With Dementia: A Randomized Controlled Trial. J Am Med Dir Assoc 2019;20:1502-1508.e1. https://doi.org/10.1016/j.jamda.2019.06.026. DOI: https://doi.org/10.1016/j.jamda.2019.06.026

32. Ballester BR, Maier M, San Segundo Mozo RM, Castañeda V, Duff A, M J Verschure PF. Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. J Neuroeng Rehabil 2016;13:74. https://doi.org/10.1186/s12984-016-0178-x. DOI: https://doi.org/10.1186/s12984-016-0178-x

33. Monteiro-Junior RS, da Silva Figueiredo LF, Maciel-Pinheiro P de T, Abud ELR, Braga AEMM, Barca ML, et al. Acute effects of exergames on cognitive function of institutionalized older persons: a single-blinded, randomized and controlled pilot study. Aging Clin Exp Res 2017;29:387-94. https://doi.org/10.1007/s40520-016-0595-5. DOI: https://doi.org/10.1007/s40520-016-0595-5

34. Johnson L, Bird M-L, Muthalib M, Teo W-P. Innovative STRoke Interactive Virtual thErapy (STRIVE) online platform for community-dwelling stroke survivors: a randomized controlled trial protocol. BMJ Open 2018;8:e018388. https://doi.org/10.1136/bmjopen-2017-018388. DOI: https://doi.org/10.1136/bmjopen-2017-018388

35. Johnson L, Bird M-L, Muthalib M, Teo W-P. An Innovative STRoke Interactive Virtual thErapy (STRIVE) Online Platform for Community-Dwelling Stroke Survivors: A Randomized Controlled Trial. Arch Phys Med Rehabil 2020;101:1131-7. https://doi.org/10.1016/j.apmr.2020.03.011. DOI: https://doi.org/10.1016/j.apmr.2020.03.011

36. Kumazaki H, Muramatsu T, Kobayashi K, Watanabe T, Terada K, Higashida H, et al. Feasibility of autism-focused public speech training using a simple virtual audience for autism spectrum disorder. Psychiatry Clin Neurosci 2020;74:124-31. https://doi.org/10.1111/pcn.12949. DOI: https://doi.org/10.1111/pcn.12949

37. Hammond J, Jones V, Hill EL, Green D, Male I. An investigation of the impact of regular use of the Wii Fit to improve motor and psychosocial outcomes in children with movement difficulties: a pilot study. Child Care Health Dev 2014;40:165-75. https://doi.org/10.1111/cch.12029. DOI: https://doi.org/10.1111/cch.12029

Downloads

Published

2022-01-01

How to Cite

1.
Gonzalez-Argote J. Use of virtual reality in rehabilitation. Rehabilitation and Sports Medicine [Internet]. 2022 Jan. 1 [cited 2026 Jan. 9];2:24. Available from: https://ri.ageditor.ar/index.php/ri/article/view/54