Frequency of anterior cruciate ligament injuries and their risk factors in young athletes attended at the Orthopedics and Traumatology Center of the city of Rosario (Argentina) in the year 2023

Authors

  • Pablo Antuña Universidad Abierta Interamericana, Sede Rosario – Santa Fe, Argentina Author
  • Elisabeth Andrea Vaieretti Universidad Abierta Interamericana, Sede Rosario – Santa Fe, Argentina Author
  • Sebastian Albano Universidad Abierta Interamericana, Sede Rosario – Santa Fe, Argentina Author

DOI:

https://doi.org/10.56294/ri202439

Keywords:

Anterior cruciate ligament injuries, young athletes, high impact sports, risk factors

Abstract

Introduction: The anterior cruciate ligament (ACL) is one of the most important stabilizers of the knee that prevents anterior translation of the tibia over the femur. ACL injuries commonly occur during sports and are usually caused by sudden stops or changes in direction during running, jumping and landing.
Objective: To describe the frequency of anterior cruciate ligament injuries and their risk factors in young athletes attended at the Orthopedics and Traumatology Center of the city of Rosario (Argentina) in the year 2023.
Materials and methods: Quantitative, descriptive, observational, cross-sectional and retrospective study, carried out at the Orthopedics and Traumatology Center (COT) from April to September 2023. The population consisted of all patients aged between 18 and 25 years, regardless of sex, who practice high-impact sports on the knee and who consulted for knee injury. The collection instrument was the medical records. The variables were summarized through central position measures (mean) and dispersion measures (range and standard deviation) and expressed in absolute and relative frequency.
Results: Thirty medical records were analyzed, of which 100% presented some ACL injury. The mean age was 21.57 ± 2.30 years, 67% were male and 33% female. Regarding the type of injury, 63% presented sprain and 37% tear. Twenty-seven percent played field hockey and rugby respectively, 20% played soccer, 13% basketball, 10% tennis and 3% volleyball. The risk factors associated with ACL injuries found in the studied population were among the intrinsic (50%) the neuromuscular deficit (37%) and genetic risk (13%); while among the extrinsic (23%) were the type of footwear (13%) used and the surface of the field (10%).
Conclusions: Patients with ACL injuries evaluated were on average 21.57 ± 2.30 years old with a male: female ratio of 2:1. The most common symptoms were walking instability, edema, swelling, and pain. The most common sports associated with anterior cruciate ligament injuries were field hockey, rugby and soccer. Neuromuscular deficit, genetic risk, improper footwear and unstable field surface were found to be risk factors

References

1. Agel, J., & Klossner, D. (2014). Epidemiologic review of collegiate ACL injury rates across 14 sports: National collegiate athletic association injury surveillance system data 2004-05 through 2011–12. British Journal of Sports Medicine, 48(7), 560-560. https://bjsm.bmj.com/content/48/7/560.2.short

2. Alvarez-Romero, J., Laguette, M. N., Seale, K., Jacques, M., Voisin, S., Hiam, D., Feller, J. A., Tirosh, O., Miyamoto-Mikami, E., Kumagai, H., Kikuchi, N., Kamiya, N., Fuku, N., Collins, M., September, A. V., & Eynon, N. (2023). Genetic variants within the COL5A1 gene are associated with ligament injuries in physically active populations from Australia, South Africa, and Japan. European Journal of Sport Science, 23(2), 284–293. https://doi.org/10.1080/17461391.2021.2011426

3. Anderson, A. F., Dome, D. C., Gautam, S., Awh, M. H., & Rennirt, G. W. (2001). Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. The American Journal of Sports Medicine, 29(1), 58–66. https://doi.org/10.1177/03635465010290011501

4. Arnold, M. P., Kooloos, J., & van Kampen, A. (2001). Single-incision technique misses the anatomical femoral anterior cruciate ligament insertion: a cadaver study. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 9(4), 194–199. https://doi.org/10.1007/s001670100198

5. Ashwini, T., & Aditi, J. (2018). MRI correlation of anterior cruciate ligament injuries with femoral intercondylar notch, posterior tibial slopes and medial tibial plateau depth in the Indian population. International Journal of Anatomy Radiology and Surgery, 7(3).

6. Babalola, O. R., Oluwadiya, K. S., & Akinyemi, A. B. (2021). Association of femoral intercondylar notch geometry with risk of anterior cruciate ligament injury in a black patient population. Scientific African, 13, e00912.

7. Badawy, Charles, Kyleen Jan, Edward C. Beck, Niles Fleet, Jeffrey Taylor, Kevin Ford, Brian

a. R. Waterman. (2022). Contemporary Principles for Postoperative Rehabilitation and Return to Sport for Athletes Undergoing Anterior Cruciate Ligament Reconstruction.

b. Arthroscopy, Sports Medicine, and Rehabilitation. (4)1: 103-e113 https://www.sciencedirect.com/science/article/pii/S2666061X21002236

8. Barnett, S. C., Murray, M. M., Flannery, S. W., BEAR Trial Team, Menghini, D., Fleming, B. C., ... & Micheli, L. (2021). ACL size, but not signal intensity, is influenced by sex, body size, and knee anatomy. Orthopaedic Journal of Sports Medicine, 9(12), 23259671211063836.

9. Basukala, B., Joshi, A., & Pradhan, I. (2020). The Effect of the Intercondylar Notch Shape and Notch Width Index on Anterior Cruciate Ligament Injuries. Journal of Nepal Health Research Council, 17(4), 532–536. https://doi.org/10.33314/jnhrc.v17i4.1858

10. Bayer, S., Meredith, S. J., Wilson, K. W., de Sa, D., Pauyo, T., Byrne, K., McDonough, C. M., & Musahl, V. (2020). Knee Morphological Risk Factors for Anterior Cruciate Ligament Injury: A Systematic Review. The Journal of Bone and Joint Surgery. American volume, 102(8), 703–718. https://doi.org/10.2106/JBJS.19.00535

11. Blanke, F., Kiapour, A. M., Haenle, M., Fischer, J., Majewski, M., Vogt, S., & Camathias, C. (2016). Risk of Noncontact Anterior Cruciate Ligament Injuries Is Not Associated With Slope and Concavity of the Tibial Plateau in Recreational Alpine Skiers: A Magnetic Resonance Imaging-Based Case-Control Study of 121 Patients. The American Journal of Sports medicine, 44(6), 1508–1514. https://doi.org/10.1177/0363546516632332

12. Boden, B. P., Sheehan, F. T., Torg, J. S., & Hewett, T. E. (2010). Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. The Journal of the American Academy of Orthopaedic Surgeons, 18(9), 520–527. https://doi.org/10.5435/00124635-

a. 201009000-00003

13. Buerba, R. A., Zaffagnini, S., Kuroda, R., & Musahl, V. (2021). ACL reconstruction in the professional or elite athlete: state of the art. Journal of ISAKOS : Joint Disorders & Orthopaedic Sports Medicine, 6(4), 226–236. https://doi.org/10.1136/jisakos-2020-

a. 000456

14. Caplan, N., & Kader, D. F. (2013). Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Classic Papers in Orthopaedics, 153-155.

15. Comeau, A. K., Parent, E. C., & Kennedy, M. D. (2023). Do Female University Varsity Athletes Have a Greater Risk of Injury Within a Competitive Varsity Season?. International Journal of Exercise Science, 16(6), 129–147.

16. D’Elía, M. C. (2015). Prevalencia de Lesiones Asociadas a Rotura Aguda de Ligamento Cruzado Anterior (LCA). Revista de la Asociación Argentina de Traumatología del Deporte, 22(1). https://g-se.com/prevalencia-de-lesiones-asociadas-a-rotura-aguda-de-

a. ligamento-cruzado-anterior-lca-1899-sa-z57cfb27260018

17. Dos’ Santos, T., Stebbings, G. K., Morse, C., Shashidharan, M., Daniels, K. A., & Sanderson,

A. (2023). Effects of the menstrual cycle phase on anterior cruciate ligament neuromuscular and biomechanical injury risk surrogates in eumenorrheic and naturally menstruating women: A systematic review. Plos one, 18(1), e0280800.

18. Dragoo, J. L., Braun, H. J., Durham, J. L., Chen, M. R., & Harris, A. H. (2012). Incidence and risk factors for injuries to the anterior cruciate ligament in National Collegiate Athletic Association football: data from the 2004-2005 through 2008-2009 National Collegiate

a. Athletic Association Injury Surveillance System. The American Journal Of Sports Medicine, 40(5), 990–995. https://doi.org/10.1177/0363546512442336

19. Fahim, S. M., Dhawan, T., Jagadeesh, N., & Ashwathnarayan, Y. P. (2021). The relationship of anterior cruciate ligament injuries with MRI based calculation of femoral notch width, notch width index, notch shape-A randomized control study. Journal of Clinical Orthopaedics and Trauma, 17, 5-10.

20. Fältström, A., Kvist, J., & Hägglund, M. (2021). High risk of new knee injuries in female soccer players after primary anterior cruciate ligament reconstruction at 5-to 10-year follow- up. The American Journal of Sports Medicine, 49(13), 3479-3487.

21. Faryniarz, D. A., Bhargava, M., Lajam, C., Attia, E. T., & Hannafin, J. A. (2006). Quantitation of estrogen receptors and relaxin binding in human anterior cruciate ligament fibroblasts. In vitro cellular & developmental biology. Animal, 42(7), 176–181. https://doi.org/10.1290/0512089.1

22. Görmeli, C. A., Görmeli, G., Öztürk, B. Y., Özdemir, Z., Kahraman, A. S., Yıldırım, O., & Gözükarab, H. (2015). The effect of the intercondylar notch width index on anterior cruciate ligament injuries: a study on groups with unilateral and bilateral ACL injury. Acta orthopaedica Belgica, 81(2), 240–244.

23. Goshima, K., Kitaoka, K., Nakase, J., Takahashi, R., & Tsuchiya, H. (2011). Clinical evidence of a familial predisposition to anterior cruciate ligament injury. British Journal of Sports Medicine, 45(4), 350-351.

24. Griffin, L. Y., Agel, J., Albohm, M. J., Arendt, E. A., Dick, R. W., Garrett, W. E., Garrick, J.

a. G., Hewett, T. E., Huston, L., Ireland, M. L., Johnson, R. J., Kibler, W. B., Lephart, S., Lewis, J. L., Lindenfeld, T. N., Mandelbaum, B. R., Marchak, P., Teitz, C. C., & Wojtys,

b. E. M. (2000). Noncontact anterior cruciate ligament injuries: risk factors and prevention

c. strategies. The Journal of the American Academy of Orthopaedic Surgeons, 8(3), 141–

d. 150. https://doi.org/10.5435/00124635-200005000-00001

25. Hasani, S., Feller, J. A., & Webster, K. E. (2022). Familial Predisposition to Anterior Cruciate Ligament Injury: A Systematic Review with Meta-analysis. Sports medicine (Auckland, N.Z.), 52(11), 2657–2668. https://doi.org/10.1007/s40279-022-01711-1

26. Hashemi, J., Chandrashekar, N., Gill, B., Beynnon, B. D., Slauterbeck, J. R., Schutt, R. C., Jr, Mansouri, H., & Dabezies, E. (2008). The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. The Journal of bone and joint surgery. American volume, 90(12), 2724–2734. https://doi.org/10.2106/JBJS.G.01358

27. Herzberg, S. D., Motu'apuaka, M. L., Lambert, W., Fu, R., Brady, J., & Guise, J. M. (2017). The Effect of Menstrual Cycle and Contraceptives on ACL Injuries and Laxity: A Systematic Review and Meta-analysis. Orthopaedic journal of sports medicine, 5(7), 2325967117718781. https://doi.org/10.1177/2325967117718781

28. Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Jr, Colosimo, A. J., McLean, S. G., van den Bogert, A. J., Paterno, M. V., & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. The American journal of sports medicine, 33(4), 492–501. https://doi.org/10.1177/0363546504269591

29. Hootman, J. M., Dick, R., & Agel, J. (2007). Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. Journal of athletic training, 42(2), 311–319.

30. Jones, J., Radel, L., Garcia, K., Soma, D., Miller, S., & Sugimoto, D. (2023). Age and Sex Comparisons in Pediatric Track and Field Hurdle Injuries Seen in Emergency Departments of the US. Sports (Basel, Switzerland), 11(3), 65. https://doi.org/10.3390/sports11030065

31. Kobayashi, H., Kanamura, T., Koshida, S., Miyashita, K., Okado, T., Shimizu, T., & Yokoe,

a. K. (2010). Mechanisms of the anterior cruciate ligament injury in sports activities: a twenty-year clinical research of 1,700 athletes. Journal of sports science & medicine, 9(4), 669–675.

32. Leblanc, D. R., Schneider, M., Angele, P., Vollmer, G., & Docheva, D. (2017). The effect of estrogen on tendon and ligament metabolism and function. The Journal of steroid biochemistry and molecular biology, 172, 106-116.

33. Viñao Auré, A. (2016). Factores de riesgo y prevención de la rotura del ligamento cruzado anterior en deportistas. https://uvadoc.uva.es/bitstream/handle/10324/20765/TFG-

a. O%20904.pdf?sequence=1

34. Lohmander, L. S., Ostenberg, A., Englund, M., & Roos, H. (2004). High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis and rheumatism, 50(10), 3145–3152. https://doi.org/10.1002/art.20589

35. Lubowitz, J. H., & Appleby, D. (2011). Cost-effectiveness analysis of the most common orthopaedic surgery procedures: knee arthroscopy and knee anterior cruciate ligament reconstruction. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association, 27(10), 1317–1322. https://doi.org/10.1016/j.arthro.2011.06.001

36. Lucidi, G. A., Grassi, A., Di Paolo, S., Agostinone, P., Neri, M. P., Macchiarola, L., ... & Zaffagnini, S. (2021). The lateral femoral notch sign is correlated with increased rotatory laxity after anterior cruciate ligament injury: pivot shift quantification with a surgical navigation system. The American Journal of Sports Medicine, 49(3), 649-655.

37. Lulińska, E., Gibbon, A., Kaczmarczyk, M., Maciejewska-Skrendo, A., Ficek, K., Leońska- Duniec, A., Wilk, M., Leźnicka, K., Michałowska-Sawczyn, M., Humińska-Lisowska, K., Buryta, R., Cięszczyk, P., Maculewicz, E., Czarny, W., September, A. V., & Sawczuk, M. (2020). Matrix Metalloproteinase Genes (MMP1, MMP10, MMP12) on Chromosome 11q22 and the Risk of Non-Contact Anterior Cruciate Ligament Ruptures. Genes, 11(7), 766. https://doi.org/10.3390/genes11070766

38. Magnusson, K., Turkiewicz, A., Frobell, R., & Englund, M. (2021). High genetic contribution to anterior cruciate ligament rupture: Heritability~ 69%. British journal of sports medicine, 55(7), 385-389.

39. Márquez Arabia, J. J., & Márquez Arabia, W. H. (2009). Lesiones del ligamento cruzado anterior de la rodilla. Iatreia, 22(3), 256-271.

40. Mattu, A. T., Ghali, B., Linton, V., Zheng, A., & Pike, I. (2022). Prevention of non-contact anterior cruciate ligament injuries among youth female athletes: An umbrella review. International Journal of Environmental Research and Public Health, 19(8), 4648.

41. Mayer, S. W., Queen, R. M., Taylor, D., Moorman, C. T., 3rd, Toth, A. P., Garrett, W. E., Jr, & Butler, R. J. (2015). Functional Testing Differences in Anterior Cruciate Ligament Reconstruction Patients Released Versus Not Released to Return to Sport. The American journal of sports medicine, 43(7), 1648–1655. https://doi.org/10.1177/0363546515578249

42. Mejías, J. D. A., García-Estrada, G. A., & Pérez-España, L. A. (2015). Actualización en las Lesiones del Ligamento Cruzado Anterior. Análisis de los Resultados Mediante TAC y Escalas Clínicas. Revista de Artroscopía [Internet], 22(11).

43. O'Connell, K., Knight, H., Ficek, K., Leonska-Duniec, A., Maciejewska-Karlowska, A., Sawczuk, M., Stepien-Slodkowska, M., O'Cuinneagain, D., van der Merwe, W.,

a. Posthumus, M., Cieszczyk, P., & Collins, M. (2015). Interactions between collagen gene variants and risk of anterior cruciate ligament rupture. European journal of sport science, 15(4), 341–350. https://doi.org/10.1080/17461391.2014.936324

44. Odensten, M., & Gillquist, J. (1985). Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. JBJS, 67(2), 257-262.

45. Olsen, O. E., Myklebust, G., Engebretsen, L., & Bahr, R. (2004). Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. The American journal of sports medicine, 32(4), 1002–1012. https://doi.org/10.1177/0363546503261724

46. Olsen, O. E., Myklebust, G., Engebretsen, L., Holme, I., & Bahr, R. (2003). Relationship between floor type and risk of ACL injury in team handball. Scandinavian journal of medicine & science in sports, 13(5), 299–304. https://doi.org/10.1034/j.1600-

a. 0838.2003.00329.x

47. Orchard, J. W., & Powell, J. W. (2003). Risk of knee and ankle sprains under various weather conditions in American football. Medicine and science in sports and exercise, 35(7), 1118–1123. https://doi.org/10.1249/01.MSS.0000074563.61975.9B

48. Orchard, J. W., Chivers, I., Aldous, D., Bennell, K., & Seward, H. (2005). Rye grass is associated with fewer non-contact anterior cruciate ligament injuries than bermuda grass. British journal of sports medicine, 39(10), 704-709.

49. Orchard, J., Seward, H., McGivern, J., & Hood, S. (2001). Intrinsic and extrinsic risk factors for anterior cruciate ligament injury in Australian footballers. The American journal of sports medicine, 29(2), 196-200.

50. Parsons, J. L., Coen, S. E., & Bekker, S. (2021). Anterior cruciate ligament injury: towards a gendered environmental approach. British journal of sports medicine, 55(17), 984-990.

51. Perini, J. A., Lopes, L. R., Guimarães, J. A. M., Goes, R. A., Pereira, L. F. A., Pereira, C. G.,

a. ... & Cossich, V. R. A. (2022). Influence of type I collagen polymorphisms and risk of anterior cruciate ligament rupture in athletes: a case-control study. BMC Musculoskeletal Disorders, 23(1), 154.

52. Pfeifer, C. E., Beattie, P. F., Sacko, R. S., & Hand, A. (2018). Risk factors associated with non- contact anterior cruciate ligament injury: a systematic review. International journal of sports physical therapy, 13(4), 575–587.

53. Romero, E., Gorodner, A., & Nuñez, M. (2014). Contribution to the Vascularization of Cruciate Knee Ligaments and its Relevance in Trauma Surgery. International Journal of Medical and Surgical Sciences, 1(4), 293-300.

54. Sasaki, N., Ishibashi, Y., Tsuda, E., Yamamoto, Y., Maeda, S., Mizukami, H., Toh, S., Yagihashi, S., & Tonosaki, Y. (2012). The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations. Arthroscopy

a. : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association, 28(8), 1135–1146. https://doi.org/10.1016/j.arthro.2011.12.021

55. Sharifi, M., & Shirazi-Adl, A. (2021). Changes in gastrocnemii activation at mid-to-late stance markedly affects the intact and anterior cruciate ligament deficient knee biomechanics and stability in gait. The Knee, 29, 530-540.

56. Shultz, S. J., Schmitz, R. J., Benjaminse, A., Chaudhari, A. M., Collins, M., & Padua, D. A. (2012). ACL Research Retreat VI: an update on ACL injury risk and prevention. Journal of athletic training, 47(5), 591–603. https://doi.org/10.4085/1062-

a. 6050-47.5.13

57. Smith, H. C., Vacek, P., Johnson, R. J., Slauterbeck, J. R., Hashemi, J., Shultz, S., & Beynnon,

a. B. D. (2012). Risk factors for anterior cruciate ligament injury: a review of the literature-

b. part 2: hormonal, genetic, cognitive function, previous injury, and extrinsic risk factors. Sports health, 4(2), 155–161. https://doi.org/10.1177/1941738111428282

58. Stijak, L., Herzog, R. F., & Schai, P. (2008). Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA, 16(2), 112–117. https://doi.org/10.1007/s00167-007-0438-1

59. Suárez Suárez, P. G. (2022). Investigación bibliográfica sobre los factores de riesgo que involucran en la lesión del ligamento cruzado anterior en deportistas jóvenes (Bachelor's thesis, Quito: UCE). http://www.dspace.uce.edu.ec/bitstream/25000/27367/1/FCDAPD-DCTF-

a. SUAREZ%20PAOLA.pdf

60. Swanik, C. B., Covassin, T., Stearne, D. J., & Schatz, P. (2007). The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. The American journal of sports medicine, 35(6), 943–948. https://doi.org/10.1177/0363546507299532

61. Viñao Auré, A. (2016). Factores de riesgo y prevención de la rotura del ligamento cruzado anterior en deportistas. https://uvadoc.uva.es/bitstream/handle/10324/20765/TFG-

a. O%20904.pdf?sequence=1&isAllowed=y

62. Waiwaiole, A., Gurbani, A., Motamedi, K., Seeger, L., Sim, M. S., Nwajuaku, P., & Hame, S.

a. L. (2016). Relationship of ACL Injury and Posterior Tibial Slope With Patient Age, Sex, and Race. Orthopaedic journal of sports medicine, 4(11), 2325967116672852. https://doi.org/10.1177/2325967116672852

63. Waldén, M., Krosshaug, T., Bjørneboe, J., Andersen, TE, Faul, O. y Hägglund, M. (2015). Predominan tres mecanismos distintos en las lesiones del ligamento cruzado anterior sin contacto en jugadores de fútbol profesionales masculinos: un análisis

a. sistemático de video de 39 casos. Revista británica de medicina deportiva , 49 (22), 1452–1460. https://doi.org/10.1136/bjsports-2014-094573

64. Wang, Y. L., Yang, T., Zeng, C., Wei, J., Xie, D. X., Yang, Y. H., Long, H. Z., Xu, B., Qian,

a. Y. X., Jiang, S. D., & Lei, G. H. (2017). Association Between Tibial Plateau Slopes and Anterior Cruciate Ligament Injury: A Meta-analysis. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association, 33(6), 1248–1259.e4. https://doi.org/10.1016/j.arthro.2017.01.015

65. Webster, K. E., & Hewett, T. E. (2018). Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. Journal of Orthopaedic Research®, 36(10), 2696-2708.

66. Zappia, M., Capasso, R., Berritto, D., Maggialetti, N., Varelli, C., D'Agosto, G., Martino, M. T., Carbone, M., & Brunese, L. (2017). Anterior cruciate ligament reconstruction: MR imaging findings. Musculoskeletal surgery, 101(Suppl 1), 23–35. https://doi.org/10.1007/s12306-017-0460-5

67. Zhou, Y., Li, L., Chen, R., & Gong, M. (2022). Double-bundle versus single-bundle anterior cruciate ligament reconstruction in preventing the progression of osteoarthritis: A protocol for systematic review and meta-analysis of randomized controlled trials. Medicine, 101(49), e31101. https://doi.org/10.1097/MD.0000000000031101

Downloads

Published

2024-09-21

How to Cite

1.
Antuña P, Vaieretti EA, Albano S. Frequency of anterior cruciate ligament injuries and their risk factors in young athletes attended at the Orthopedics and Traumatology Center of the city of Rosario (Argentina) in the year 2023. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria [Internet]. 2024 Sep. 21 [cited 2024 Dec. 10];4:.39. Available from: https://ri.ageditor.ar/index.php/ri/article/view/39