Raloxifene as a neuroprotectant in an in vitro model of perinatal asphyxia

Authors

DOI:

https://doi.org/10.56294/ri202535

Keywords:

Asphyxia Neonatarum, Raloxifene, Hypoxia-Ischemia, Brain Injury, Hypoxic Ischemic Encephalopathy

Abstract

Introduction: perinatal asphyxia is one of the most common causes of morbidity and mortality in the neonatal period, with preterm newborns being the most affected and it is more frequent in developing countries. 
Objective: to describe the use of raloxifene as a neuroprotector in perinatal asphyxia.
Method: a review of the literature selected by the authors was carried out, obtained through reference search engines, in which topics related to perinatal asphyxia and all the alterations produced by this pathology are included.
Results: applying raloxifene to 7-day-old male Sprague-Dawley rats, which were submitted to a ligation of the common carotid artery, we obtained as results a decrease in the production of free radicals, among other processes, favoring neuronal viability through the conservation of mitochondria functions.
Conclusion: in view of the lack of pharmacological treatments, certain international organizations, such as the World Health Organization and the United Nations Children's Fund, have emphasized research into new therapeutic alternatives. Today there is only one type of treatment approved and used for newborns suffering from perinatal asphyxia, therapeutic hypothermia. The use of raloxifene in a murine model promises to be an alternative, although it is still under investigation

References

1. Gizachew S, Wogie G, Getnet M, Lonsako AA. Magnitude of neonatal asphyxia and its predictors among newborns at public hospitals of Wolaita Zone in Southern Ethiopia. BMC Pediatr. 2024;24(1):142.

2. Urrego LNT. Esteroides sintéticos como agentes neuroprotectores contra los efectos neurodegenerativos inducidos por hipoxia isquemia perinatal en ratas.

3. Toro-Urrego N, Avila-Rodriguez M, Inés Herrera M, Aguilar A, Udovin L, Luaces JP. Neuroactive steroids in hypoxic–ischemic brain injury: overview and future directions. In: Otero-Losada M, Capani F, Perez Lloret S, eds. Neuroprotection - New approaches and prospects. IntechOpen; 2020.

4. Hübner M. Asfixia perinatal. Edición Servicio Neonatología Hospital Clínico Universidad de Chile. Capítulo 9, 64-9.

5. Badurdeen S, Roberts C, Blank D, Miller S, Stojanovska V, Davis P, Hooper S, Polglase G. Haemodynamic instability and brain injury in neonates exposed to hypoxia–ischaemia. Brain Sci. 2019;9(49). https://doi.org/10.3390/brainsci9030049

6. Cánovas-Ahedo M, Alonso-Alconada D. Terapia combinada frente a la encefalopatía hipóxico-isquémica neonatal. Anales de Pediatría. 2019;91(1):59.e1-59.e7. https://doi.org/10.1016/j.anpedi.

7. del Pozo A, Villa M, Martínez-Orgado J. Potential therapeutic applications of stem cell therapy for neonatal hypoxic-ischaemic brain injury. Neurology Perspectives. 2022;2(Supplement 1):S49-S57. https://doi.org/10.1016/j.neurop.2021.07.004.

8. Tian T, Zeng J, Zhao G, Zhao W, Gao S, Liu L. Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons. Exp Biol Med (Maywood). 2018;243(1):78-86. https://doi.org/10.1177/1535370217737983

9. Toro-Urrego N, Vesga-Jiménez DJ, Herrera MI, Luaces JP, Capani F. Neuroprotective role of hypothermia in hypoxic-ischemic brain injury: combined therapies using estrógeno. CN. 2019;17(9):874-90.

10. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698(1–3):6-18. https://doi.org/10.1016/j.ejphar.2012.10.032

11. Palacios Alaiz E, Miró MJ, Boticario C. Muerte celular y cáncer: las vías de la apoptosis y de la autofagia como dianas en la terapia del cáncer. Anales de la Real Academia de Doctores. 2011;15(2):191-216.

12. Sofroniew MV, Vinters HV. Astrocitos: biología y patología. Acta Neuropathol. 2010;119:7–35. https://doi.org/10.1007/s00401-009-0619-8

13. Rocha-Ferreira E, Hristova M. Antimicrobial peptides and complement in neonatal hypoxia-ischaemia induced brain damage. Front Immunol. 2015;6:56. https://doi.org/10.3389/fimmu.2015.00056

14. Zhou KQ, Dhillon SK, Bennet L, Gunn AJ, Davidson JO. Abordar la neuroinflamación persistente después de la encefalopatía hipóxico-isquémica: ¿es la exendina-4 la respuesta? Int J Mol Sci. 2022;23(17):10191. https://doi.org/10.3390/ijms231710191

15. Sullivan SM, Björkman ST, Miller SM, Colditz PB, Pow DV. Morphological changes in white matter astrocytes in response to hypoxia/ischemia in the neonatal pig. Brain Res. 2010;1319:164-74. https://doi.org/10.1016/j.brainres.2010.01.010.

16. McGraw J, Hiebert GW, Steeves JD. Modulating astrogliosis after neurotrauma. J Neurosci Res. 2001;63(2):109-15.

17. Cieri MB. Estudio de la formación de la cicatriz glial in vitro.

18. Snyder KR, Sparano N, Malinowski JM. Clorhidrato de raloxifeno. Am J Health-Syst Pharm. 2000;57(18):1669–75.

19. Hochner-Celnikier D. Pharmacokinetics of raloxifene and its clinical application. Eur J Obstet Gynecol Reprod Biol. 1999;85(1):23-9

Downloads

Published

2025-01-01

How to Cite

1.
Errandonea C, Capani F. Raloxifene as a neuroprotectant in an in vitro model of perinatal asphyxia. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria [Internet]. 2025 Jan. 1 [cited 2025 Feb. 16];5:35. Available from: https://ri.ageditor.ar/index.php/ri/article/view/35