doi: 10.56294/ri202348

 

ORIGINAL BRIEF

 

Comparative pilot study of anthropometric measurements in standing position between the grid template and the anthropometer Harpenden

 

Estudio piloto comparativo de medidas antropométricas en bipedestación entre Tablas antropométricas y un Antropómetro Harpenden

 

Alejandro Labrador Parra1  *, Evelin Escalona2  *, Omaira Gollo3  *

 

1Facultad Ingeniería, Universidad Central de Venezuela. Núcleo Armando Mendoza. Aragua, Venezuela.

2University of Carabobo. Faculty of Health Sciences, Coordinator of the Doctoral Program in Public Health. Aragua, Venezuela.

3Director(E) of Research in Biological Sciences of FUNDACREDESA. Caracas, Venezuela.

 

Cite as: Labrador Parra A, Escalona E, Gollo O. Comparative pilot study of anthropometric measurements in standing position between the grid template and the anthropometer Harpenden. Interdisciplinary Rehabilitation / Rehabilitación Interdisciplinaria. 2023; 3:48. https://doi.org/10.56294/ri202348

 

Submitted: 15-05-2023          Revised: 04-06-2023          Accepted: 19-07-2023          Published: 20-07-2023

 

Editor: Prof. Dr. Carlos Oscar Lepez   

 

Translated by: Anabelle Yanes Monteverde *

 

Peer-reviewed article

 

ABSTRACT

 

Introduction: anthropometric dimensions allow the world of work to adapt the means and the workplace to the workers’ characteristics and improve their jobs. It is necessary to have alternatives to carry out anthropometric measurements, given the costs of measuring instruments and the limited availability of such instruments in occupational health and safety services.

Aim: to compare standing anthropometric measurements using anthropometric tables versus the Harpenden anthropometer.

Methods: a descriptive cross-sectional study was carried out with a population of 26 workers (11 men and 15 women). The following measurements were taken in a standing position with the anthropometric tables and the Holtain Harpenden anthropometer: height, shoulder height, height at the middle finger, and length of the upper limb, using the Student’s t-hypothesis test to compare both measurements.

Results: the values of the anthropometric variables measured by both the anthropometric tables and the Harpenden anthropometer did not present significant statistical differences, both in men and women.

Conclusions: the pilot test showed that using anthropometric tables in anthropometric studies constitutes a low-cost alternative.

 

Keywords: Anthropometry; Anthropometric Dimensions; Measuring Instruments; Anthropometer; The Grid Template.

 

RESUMEN

 

Introducción: las dimensiones antropométricas permiten en el mundo del trabajo adaptar los medios y el lugar de trabajo a las características de los trabajadores/ras y mejorar sus puestos de trabajo. Se hace necesario disponer de alterativas para efectuar las mediciones antropométricas, dado los costos de los instrumentos de medición y la poca disponibilidad de obtenerlos en los servicios de salud y seguridad en el trabajo.

Objetivo: comparar las mediciones antropométricas en bipedestación utilizando tablas antropométricas versus el uso del antropómetro Harpenden.

Metodos: se hizo un estudio transversal descriptivo, con una población de 26 trabajadores (11 hombres y 15 mujeres). Se tomaron las siguientes mediciones en bipedestación con las tablas antropométricas y el antropómetro Harpenden marca Holtain: Altura o Estatura, Altura del hombro, Altura al dedo medio y longitud del miembro superior.Se utilizó la prueba de hipótesis t de student para comparar ambas mediciones.

Resultados: los valores de las variables antropométricas medidas tanto por las tablas antropométricas como el antropómetro Harpenden no presentaron diferencias estadísticas significativas, tanto en hombres como en mujeres.

Conclusiones: la prueba piloto mostro que el uso de las tablas antropométricas en los estudios antropométricos constituye una alternativa de bajo costo.

 

Palabras clave: Antropometría; Dimensiones Antropométricas; Instrumentos de Medición; Antropómetro; Tablas Antropométricas.

 

 

 

INTRODUCTION

Anthropometry represents a fundamental technique within ergonomics, because from its epistemological assumptions it pursues the study of proportions and dimensions of the human being. Etymologically, the word comes from the Greek arthropod (man) and metrics (measure) which tells us about the measurements of the human body.(1) Likewise, anthropometry is the treaty of the proportions and measurements of the human body.(2)

From the ontological assumptions, the dimensions of the body will have relevance in public health; since anthropometry will be useful in the study of the etiology of chronic diseases and/or in the detrimental effects, which may occur either due to levels of malnutrition or obesity. It is also associated with childhood growth and development, adult chronic diseases; and the effect of the job on working conditions and environment.

In this sense, the measurements of anthropometric dimensions allow the world of work to be able to adapt the work environment to the characteristics of the workers and contribute to improving their workplace.

It should be noted that from the axiological assumptions anthropometry can be static or structural. The first measures the dimensions of the body in a fixed or static position; while the second is dynamic or functional related to movement to certain activities. Likewise, in an industrial environment to handle a machine and/or equipment, it requires certain movements that can be related to dynamic measurements; but the complexity where limbs and joints come into play makes it complicated; that is why for these studies on anthropometric measurements in the workplace, the most recommendable, except in specific cases, is to take static anthropometric data.(3)

Anthropometrics within its epistemological assumptions, in the framework of the measurements and calculations of the different measurements of the body, takes the different anatomical structures as a reference. This approach to the quantifiable and/or measurable sustains its ontological level; which is nothing more than adapting that environment or job in the industrial world to the human being or worker.

On the other hand, the measurement equipment represents the instruments that the anthropometrician requires in his research, they must meet the objectives of each anthropometric study that allows adequate data collection. In this order of ideas, the anthropometric study contemplates the use of sophisticated equipment, which allows measuring the dimensions of the human body in a correct way.(4)

Taking into account the above assumption, it is necessary to have adequate instruments that allow the recording of this anthropometric data. In this sense, if measurements are made manually, these can be addressed with instruments such as: stadiometer, anthropometer, anthropometric compass, tape measure, anthropometric chair, among others. Likewise, in anthropometric studies, there are other more sophisticated forms of measurement using digital technology such as photography, infrared thermography equipment, SYMCAD and its patented 3D acquisition technology.(5)

However, given the high cost (between $400-$2000) of acquiring both manual and digital instruments, it is important to take alternatives regarding other types of measurement instruments at lower costs and easy acquisition that allow the objective of obtaining anthropometric data in our ergonomic research in Venezuela.

In this regard, we can mention an experimental measurement instrument that is used in anthropometry laboratories that is easy to use, acquire and low cost ($50), such as anthropometric tables. This model was initially used by Morgan, Cook, Chapinis & Lunk,(6) it consists of two sheets of wood 2 meters high by 80 cm wide joined by an axis; In addition, each sheet contains a laminated grid sheet and each square measures 0,5cm (Figure 1-2).

 

Figure 1. Anthropometric tables

 

Figure 2. Use of anthropometric tables

 

Given the above considerations, the objective of this study was to compare standing anthropometric measurements using anthropometric tables versus the use of the Holtain-brand Harpenden anthropometer.

 

METHODS

A descriptive cross-sectional study was carried out at the headquarters of the Fundación Centro de Estudios Sobre Crecimiento y Desarrollo Humano de la Población Venezolana (FUNDACREDESA). The proper institutional authorization was processed to access the working population of this organization. 26 workers (11 men and 15 women) participated in this study. The following measurements were taken: height or stature, shoulder height, height at the middle finger and length of the upper limb.

As reference for the informed consent of the participant or collaborator we used  the letter from the Ministry of Health, Hospital General “Dr. Manuel Gea González", together with the Declaration of Helsinki of the World Medical Association - Ethical principles for medical research in human beings. Once the informed consent document was read, the subjects who agreed to participate voluntarily allowed themselves to be measured and collaborated in the study.(7,8)

 

RESULTS

The present study was carried out to observe if there are significant statistical differences related to the measurements between the anthropometric tables and the anthropometer. In this sense, for a sample of 26 people between the ages of 20-60+, the student's t test criterion was applied, which is considered for a small sample ≤ 30.(9,10,11,12)

Table 1 shows the averages of the measurements of the male population (n=11) and table 2 for the female population (n=15).

Table 1. Average of anthropometric measurements with the two instruments in men (n=11).

Age

Height

( AT)

Acromion height

 (AT )

Height to finger      (AT)

Arm length

(AT)

Height

 (A)

Acromion height

 (A)

Height to finger      (A)

Arm length

(A)

23

168

139

63

76

168

139

63

76

52

172

138,1

63,1

75

172,1

138,8

63,2

75,6

35

170,8

141,8

64,7

77,1

170,3

142

65

77

43

165,9

135,3

59

76,3

166,9

136,4

59,2

77,2

19

167

136,5

59,9

76,6

166,9

136,9

60,8

76,1

40

186,1

159

71

88

187

159

71,9

87,1

53

170,6

142,2

64

78,2

171,6

143,1

65

78,1

46

174

143,2

66,5

76,7

175

143,5

67

76,5

24

179

147

69

78

179,7

148

69,4

78,6

58

169,2

140,3

64

76,3

170,2

140,9

64,8

76,1

71

176

145,2

65,7

79,5

176,4

146,2

66,7

79,5

Anthropometric Table (AT), Anthrophometer (A).

 

Table 2. Average of anthropometric measurements with the two instruments in women (n=15).

E

Height

( AT)

Acromion height

 (AT )

Height to finger      (AT)

Arm length

(AT)

Height

 (A)

Acromion height

 (A)

Height to finger      (A)

Arm length

(A)

26

159

130

59

71

160,03

131

60

71

45

152

124

56

68

152,9

125

56

69

52

151

125

59,2

65,8

152,1

125

59,2

65,8

28

153

125,3

57,3

68

153,2

126

57,7

68,3

28

158

131

59

72

158,5

131,8

59,3

72,5

49

156,9

131,8

61,2

70,6

156,9

131,2

61,1

70,1

49

148,3

122,2

55,8

66,4

148,7

123,2

56,6

66,6

44

157

127,4

55,8

71,6

158

128,4

56,8

71,6

35

151

124,7

56,3

68,4

150,9

124,6

57,2

67,4

43

158,1

132,3

62,4

69,9

158

133

63,4

69,6

30

160

134,2

61,8

72,4

160,2

135

62,6

72,4

45

151,6

126

57,8

68,2

152,5

127

58,7

68,3

64

158

132,2

56

76,2

159,1

133,2

57,1

76,1

36

157,9

131,7

62,7

69

158,2

131,9

63,3

68,6

52

153,5

125,5

56,2

69,3

153,9

126

57,2

68,8

Note: Anthropometric Table (AT), Anthrophometer (A).

 

Hypothesis:

For this study, the Student t Hypothesis Test was used. In order to demonstrate whether the differences are significant, the following criterion is applied:

H0= Medians do not have significant differences. (µ1= µ2).

H1= Medians show significant differences (µ1≠ µ2) having a significance level α=0.05. Taking the criterion: P-Value›α, there are no significant differences in the measurements of the two teams and on the other hand, P -Valor‹α has significant differences between the two teams from the statistical point of view.

 

Table 3. Statistical results for the measurements. Anthropometric tables versus Anthropometer. men (n=11).

Variable

Median

Standard

deviation

Standard error of the median

P-Value

Decision making

Height (AT)

Height (A)

172,60

173,10

5,94

6,11

1,8

1,8

p=0,848

P›α= 0,05 accept

H0: Medians do not have significant differences.

Acromion height (AT)

Acromion height (A)

142,51

143,07

6,52

6,41

2,0

1,9

p=0,840

P›α= 0,05, accept

H0: Medians do not have significant differences

 

As can be seen in Table 3, the values of the anthropometric variables measured by both the anthropometric tables and the Harpenden anthropometer do not present significant differences from the statistical point of view that demonstrate the use of one or the other instrument.

Table 4 below shows the results of the sample for women (n=15), with the help of the minitab-17 package.

 

Table 4. Statistical results for the measurements. Anthropometric tables versus Anthropometer. women (n=15)

Variable

Median

Standard

deviation

Standard error of the median

P-Value

Decision making

Height (AT)

Height (A)

155,02

155,54

3,67

3,67

0,95

0,95

p = 0,700

 

P›α= 0,05, accept

H0: Medians do not have significant differences.

Acromion height (AT)

Acromion height (A)

128,22

128,82

3,80

3,79

0,98

0,98

p = 0,669

P›α= 0,05, accept

H0: Medians do not have significant differences

 

Table 4 also shows that there are no significant differences in terms of the measurements of one of the other instruments. The median are very close, which allows us to demonstrate the use of anthropometric tables.

 

CONCLUSION

The pilot test showed that the use of anthropometric tables in anthropometric studies constitutes a low-cost alternative, following the protocol referred to by international standards for anthropometric assessment.

 

REFERENCES

1. Valero E. Antropometría. España: Instituto De Seguridad E Higiene En El Trabajo. 2017. https://www.insst.es/documents/94886/524376/DTEAntropometriaDP.pdf/032e8c34-f059-4be6-8d49-4b00ea06b3e6

 

2. Panero J, Zelnik M. Dimensiones Humanas De Los Espacios Interiores. Estándares Antropométricos. Barcelona, España, editorial Gustavo Gili, S.A; 1996.

 

3. Carmona A. Aspectos antropométricos de la población laboral española, aplicados al diseño industrial. Instituto Nacional de Seguridad e Higiene en el Trabajo. Madrid, España; 2003. https://www.insst.es/documentacion/catalogo-de-publicaciones/-/asset_publisher/x10eMfRbZbxt/content/aspectos-antropometricos-de-la-poblacion-laboral-espanola-aplicados-al-diseno-industrial-ano-20-1

 

4. Carmanete L, Moncada F, Borjas E. Manual de medidas antropométricas. Universidad Nacional; 2014. https://repositorio.una.ac.cr/bitstream/handle/11056/8632/MANUAL%20ANTROPOMETRIA.pdf.

 

5. Nariño Lescay R, Alonso Becerra A, Hernández González A. Antropometría. Análisis comparativo de las tecnologías para la captación de las dimensiones antropométricas. Revista Eia. 2016;(26):47-59. https://doi.org/10.24050/reia.v13i26.799

 

6. Morgan CT, Cook JS, Chapanis A, Lunk M. W. Human Engineering guide to equipment design. McGraw-hill Book Company. https://doi.org./10.1037/13113-000.  

 

7. Secretaría de Salud, Hospital General "Dr. Manuel Gea González”. Guía para la elaboración de la carta de consentimiento informado para participar en una investigación clínica. Subdirección de Investigación Biométrica, División de investigación Clínica. 2014. México. https://www.gob.mx/cms/uploads/attachment/file/622302/CARTA_CONSENTIMIENTO_INFORMADO.docx

 

8. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 2013;310:2191–4. https://doi.org/10.1001/jama.2013.281053.

 

9. Miller I, Freund JE. Probability and Statistics for Engineers.  Prentice-Hall Inc. New Jersey, USA; 1965.

 

10. Ramírez ME, Ron M, Mago G, Hernandez–Runque E, Martínez MDC, Escalona E. Proposal for an epidemiological surveillance program for the prevention of occupational accidents and diseases in workers exposed to carbon dioxide (CO2) at a Venezuelan brewing company. Data & Metadata. 2023;2:55. https://doi.org/10.56294/dm202355

 

11. Trovat Ascanio V, Ron M, Hernández-Runque E, Sánchez-Tovar L, Hernández J, Jiménez M. Trabajadores con discapacidad y significación del proceso Salud-Trabajo. Visibilizando claves para la prevención. Salud, Ciencia y Tecnología. 2022;2(S1):224. https://doi.org/10.56294/saludcyt2022224  

 

12. Zea Quispe I, Ron M, Hernandéz-Runque E, Escalona E, Trovat-Ascanio V. Evaluación ergonómica del puesto de trabajo colgador de pollo en empresa beneficiadora de aves. Salud, Ciencia y Tecnología. 2022;2(S1):217. https://doi.org/10.56294/saludcyt2022217

 

ACKNOWLEDGMENT

To Fundación Centro de Estudios Sobre Crecimiento y Desarrollo Humano de la Población Venezolana (FUNDACREDESA) and its staff of anthropometrist technicians: Yuleisy Yacot, Gabriel Albujas, Daniel González, for their willingness and support in this pilot study.

 

FINANCING

No financing.

 

CONFLICT OF INTEREST

None.

 

AUTHORSHIP CONTRIBUTION

Conceptualization: Alejandro Labrador Parra, Evelin Escalona y Omaira Gollo.

Research: Alejandro Labrador Parra, Evelin Escalona y Omaira Gollo.

Writing - proofreading and editing: Alejandro Labrador Parra, Evelin Escalona y Omaira Gollo.